People

George Wells

Louis Berger Junior Professor of Civil and Environmental Engineering
McCormick School of Engineering and Applied Science
Northwestern University

Postdocs

Yubo Wang

email

Ph.D. (2017) The University of Hong Kong, Civil Engineering

My PhD program evolved around the anaerobic digestion bioprocesses. One of the scientific questions that fascinated me most was: the biochemistry and energy conservation involved in the anaerobes’ metabolism and how the intricate synergy may get established in the natural/engineered consortia. Complementary application of the molecular methods including the multi-omics approaches, the cultivation techniques and the ecological characterization may provide an unprecedented opportunity to uncover roles of some important functional microbes that are hiding in plain sight due to the cultivation bottlenecks. As a postdoc student in Wells’ group, I am now trying to expand my research areas from the anaerobic carbon cycle to the microbial nitrogen cycle. I will work with members in the group to explore the applicability of the mainstream Anammox bioprocesses; and will also focus on answering some fundamental research questions as the ecological niche of AOB/NOB/Comammox in the mainstream shortcut biological nitrogen removal processes (SCBNR).

Fabrizio Sabba

email

Ph.D. (2017) University of Notre Dame (USA), Civil and Environmental Engineering

Fab joined the Wells research group in 2018.  His research interests include biological processes for nutrients removal and resource recovery during water and wastewater treatment, with a focus on biofilm processes.  He obtained his Ph.D. in Environmental Engineering at the University of Notre Dame in 2017.  With funding from the Water Environment Research Foundation (WERF), he investigated nitrous oxide (N2O) emissions from biofilm systems by combining experimental and mathematical modeling approaches.  At Northwestern, Fab is involved with operation and maintenance strategies for biofilm reactors performing mainstream nitritation-anammox and other shortcut nitrogen removal bioprocesses for municipal water resource recovery facilities.  Additionally, in collaboration with the Department of Mechanical Engineering at Northwestern, he has carried out work on Optical Coherence Elastography (OCE), a novel technique that allows the quantification of mechanical properties in biofilms, with the overall goal of linking mesoscale biofilm structure to mechanical responses.  Finally, Fab is using molecular tools, e.g. FISH and qPCR and 16S amplicon sequencing to investigate Polyphosphate-Accumulating Organisms (PAOs) community composition in Sidestream Enhanced Biological Phosphorus Removal (S2EBPR) processes.  

 

Graduate Students

Han Gao

email

Han Gao is a Ph.D. candidate in the Department of Civil and Environmental Engineering at Northwestern University. She holds a M.S. in Geography and Environmental Engineering from Johns Hopkins University, and B.S. in Environmental Science and Engineering from Tongji University. During her undergraduate study, Han was involved in research related to anaerobic digestion and algal cultivation. Her research interest is the field of resources and energy recovery from wastewater.

Paul Roots

email

My current project involves bench-scale testing of the application of anammox (anaerobic ammonium oxidizing) bacteria to mainstream municipal wastewater streams for nitrogen removal. Compared to conventional N removal methods, this process can save both energy via aeration reduction and organic carbon. Further work will investigate the operating conditions and growth structures that optimize anammox activity and biomass retention.

McKenna Farmer

email

McKenna begins her Ph.D. in the fall of 2019. She is a recent graduate from the University of Wisconsin-Platteville with a B.S. in Civil Engineering. Her research interests center on biological nutrient removal; in particular, she is interested in optimizing operations of nutrient removal processes and modeling those systems to better understand their underlying physical, chemical, and biological interactions.

Hau Truong

email

I graduated from Iowa State University with a B.S. in Civil/Environmental Engineering. My current research is on Enhanced biological phosphorus removal (EBPR) in a high-rate system in which COD oxidation is minimized to redirect more COD to digesters for greater energy production. My interests are on nutrient removal, analysis of microbial composition in removal processes, and how to manipulate and utilize microbial communities using molecular techniques for wastewater treatment. I am originally from Vietnam.

Alumni

Alex Rosenthal

email

Alex joined the Wells research group in 2014 and is involved in multiple applied and fundamental research projects. His current project is an investigation of the interplay among mesoscale structure, mechanical properties, and emergent macroscale function in environmentally relevant biofilms. The long term goal of this project is to create a strategy for “structural health monitoring” of biofilm reactors that could be adopted by researchers and water resource recovery engineers to predict process stability. On the applied side, Alex is participating in studies to investigate the feasibility of (1) applying anaerobic ammonium oxidation in the mainstream of municipal water resource recovery facilities and (2) various fermentation technologies to recover waste organic carbon for beneficial use. Together, these projects help guide municipalities towards energy- and cost-neutral water resource recovery.

Morgan Petrovich

email

My current research investigates spatial dynamics of antibiotic resistance and diversity in lab-scale wastewater treatment bioreactors. I have also used bioinformatics tools to analyze microbial community structure and genetic content within full-scale wastewater treatment facilities. This involved high-throughput metagenomics sequencing to track the abundance and fate of antibiotic resistance and production genes as well as mobile genetic elements such as plasmids and integrons throughout wastewater treatment systems. Some of my other past work has focused on characterization of dual and mixed-species biofilm structural parameters using data analysis of 3D image stacks obtained through confocal laser scanning microscopy (CLSM) and optical coherence tomography (OCT).

Jim Griffin

email

My research uses high throughput sequencing to investigate the complex microbial consortia in engineered and natural environments. I’m currently studying seasonal shifts in communities in Chicago’s Water Reclamation District using amplicon sequencing. I am developing new methods to improve our understanding of the environmental factors that lead to community stability and resilience and identifying triggers for and responses to disturbances is critical to designing efficient processes for nutrient removal.